Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors.

Identifieur interne : 001871 ( Main/Exploration ); précédent : 001870; suivant : 001872

TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors.

Auteurs : John R. Rohde [États-Unis] ; Susan Campbell ; Sara A. Zurita-Martinez ; N Shane Cutler ; Mark Ashe ; Maria E. Cardenas

Source :

RBID : pubmed:15367655

Descripteurs français

English descriptors

Abstract

The Tor kinases are the targets of the immunosuppressive drug rapamycin and couple nutrient availability to cell growth. In the budding yeast Saccharomyces cerevisiae, the PP2A-related phosphatase Sit4 together with its regulatory subunit Tap42 mediates several Tor signaling events. Sit4 interacts with other potential regulatory proteins known as the Saps. Deletion of the SAP or SIT4 genes confers increased sensitivity to rapamycin and defects in expression of subsets of Tor-regulated genes. Sap155, Sap185, or Sap190 can restore these responses. Strains lacking Sap185 and Sap190 are hypersensitive to rapamycin, and this sensitivity is Gcn2 dependent and correlated with a defect in translation, constitutive eukaryotic initiation factor 2alpha hyperphosphorylation, induction of GCN4 translation, and hypersensitivity to amino acid starvation. We conclude that Tor signals via Sap-Sit4 complexes to control both transcriptional and translational programs that couple cell growth to amino acid availability.

DOI: 10.1128/MCB.24.19.8332-8341.2004
PubMed: 15367655
PubMed Central: PMC516738


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors.</title>
<author>
<name sortKey="Rohde, John R" sort="Rohde, John R" uniqKey="Rohde J" first="John R" last="Rohde">John R. Rohde</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, 322 CARL Bldg., Box 3546, Research Dr., Durham, NC 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, 322 CARL Bldg., Box 3546, Research Dr., Durham, NC 27710</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Campbell, Susan" sort="Campbell, Susan" uniqKey="Campbell S" first="Susan" last="Campbell">Susan Campbell</name>
</author>
<author>
<name sortKey="Zurita Martinez, Sara A" sort="Zurita Martinez, Sara A" uniqKey="Zurita Martinez S" first="Sara A" last="Zurita-Martinez">Sara A. Zurita-Martinez</name>
</author>
<author>
<name sortKey="Cutler, N Shane" sort="Cutler, N Shane" uniqKey="Cutler N" first="N Shane" last="Cutler">N Shane Cutler</name>
</author>
<author>
<name sortKey="Ashe, Mark" sort="Ashe, Mark" uniqKey="Ashe M" first="Mark" last="Ashe">Mark Ashe</name>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15367655</idno>
<idno type="pmid">15367655</idno>
<idno type="doi">10.1128/MCB.24.19.8332-8341.2004</idno>
<idno type="pmc">PMC516738</idno>
<idno type="wicri:Area/Main/Corpus">001879</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001879</idno>
<idno type="wicri:Area/Main/Curation">001879</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001879</idno>
<idno type="wicri:Area/Main/Exploration">001879</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors.</title>
<author>
<name sortKey="Rohde, John R" sort="Rohde, John R" uniqKey="Rohde J" first="John R" last="Rohde">John R. Rohde</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, 322 CARL Bldg., Box 3546, Research Dr., Durham, NC 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, 322 CARL Bldg., Box 3546, Research Dr., Durham, NC 27710</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Campbell, Susan" sort="Campbell, Susan" uniqKey="Campbell S" first="Susan" last="Campbell">Susan Campbell</name>
</author>
<author>
<name sortKey="Zurita Martinez, Sara A" sort="Zurita Martinez, Sara A" uniqKey="Zurita Martinez S" first="Sara A" last="Zurita-Martinez">Sara A. Zurita-Martinez</name>
</author>
<author>
<name sortKey="Cutler, N Shane" sort="Cutler, N Shane" uniqKey="Cutler N" first="N Shane" last="Cutler">N Shane Cutler</name>
</author>
<author>
<name sortKey="Ashe, Mark" sort="Ashe, Mark" uniqKey="Ashe M" first="Mark" last="Ashe">Mark Ashe</name>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (MeSH)</term>
<term>Gene Expression Regulation (physiology)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphoprotein Phosphatases (metabolism)</term>
<term>Phosphoproteins (genetics)</term>
<term>Phosphoproteins (metabolism)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Protein Biosynthesis (physiology)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein Phosphatase 2 (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Ribonucleoprotein, U2 Small Nuclear (genetics)</term>
<term>Ribonucleoprotein, U2 Small Nuclear (metabolism)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Transcription, Genetic (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biosynthèse des protéines (physiologie)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Petites ribonucléoprotéines nucléaires U2 (génétique)</term>
<term>Petites ribonucléoprotéines nucléaires U2 (métabolisme)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphoprotein Phosphatases (métabolisme)</term>
<term>Phosphoprotéines (génétique)</term>
<term>Phosphoprotéines (métabolisme)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Protein Phosphatase 2 (MeSH)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Protéines adaptatrices de la transduction du signal (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation de l'expression des gènes (physiologie)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Transcription génétique (physiologie)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphoproteins</term>
<term>Ribonucleoprotein, U2 Small Nuclear</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphoprotein Phosphatases</term>
<term>Phosphoproteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein Kinases</term>
<term>Ribonucleoprotein, U2 Small Nuclear</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Protein Phosphatase 2</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Petites ribonucléoprotéines nucléaires U2</term>
<term>Phosphoprotéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Petites ribonucléoprotéines nucléaires U2</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphoprotein Phosphatases</term>
<term>Phosphoprotéines</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Régulation de l'expression des gènes</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Protein Biosynthesis</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Reporter</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes rapporteurs</term>
<term>Protein Phosphatase 2</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines adaptatrices de la transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Tor kinases are the targets of the immunosuppressive drug rapamycin and couple nutrient availability to cell growth. In the budding yeast Saccharomyces cerevisiae, the PP2A-related phosphatase Sit4 together with its regulatory subunit Tap42 mediates several Tor signaling events. Sit4 interacts with other potential regulatory proteins known as the Saps. Deletion of the SAP or SIT4 genes confers increased sensitivity to rapamycin and defects in expression of subsets of Tor-regulated genes. Sap155, Sap185, or Sap190 can restore these responses. Strains lacking Sap185 and Sap190 are hypersensitive to rapamycin, and this sensitivity is Gcn2 dependent and correlated with a defect in translation, constitutive eukaryotic initiation factor 2alpha hyperphosphorylation, induction of GCN4 translation, and hypersensitivity to amino acid starvation. We conclude that Tor signals via Sap-Sit4 complexes to control both transcriptional and translational programs that couple cell growth to amino acid availability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15367655</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>11</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>24</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2004</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors.</ArticleTitle>
<Pagination>
<MedlinePgn>8332-41</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The Tor kinases are the targets of the immunosuppressive drug rapamycin and couple nutrient availability to cell growth. In the budding yeast Saccharomyces cerevisiae, the PP2A-related phosphatase Sit4 together with its regulatory subunit Tap42 mediates several Tor signaling events. Sit4 interacts with other potential regulatory proteins known as the Saps. Deletion of the SAP or SIT4 genes confers increased sensitivity to rapamycin and defects in expression of subsets of Tor-regulated genes. Sap155, Sap185, or Sap190 can restore these responses. Strains lacking Sap185 and Sap190 are hypersensitive to rapamycin, and this sensitivity is Gcn2 dependent and correlated with a defect in translation, constitutive eukaryotic initiation factor 2alpha hyperphosphorylation, induction of GCN4 translation, and hypersensitivity to amino acid starvation. We conclude that Tor signals via Sap-Sit4 complexes to control both transcriptional and translational programs that couple cell growth to amino acid availability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rohde</LastName>
<ForeName>John R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, 322 CARL Bldg., Box 3546, Research Dr., Durham, NC 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Susan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zurita-Martinez</LastName>
<ForeName>Sara A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cutler</LastName>
<ForeName>N Shane</ForeName>
<Initials>NS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ashe</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>Maria E</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K22 CA094925</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA114107</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K22 CA94925-01</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010750">Phosphoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017413">Ribonucleoprotein, U2 Small Nuclear</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491800">SAP155 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C512912">GCN2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D010749">Phosphoprotein Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D054648">Protein Phosphatase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="C104343">SIT4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010749" MajorTopicYN="N">Phosphoprotein Phosphatases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010750" MajorTopicYN="N">Phosphoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054648" MajorTopicYN="N">Protein Phosphatase 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017413" MajorTopicYN="N">Ribonucleoprotein, U2 Small Nuclear</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15367655</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.24.19.8332-8341.2004</ArticleId>
<ArticleId IdType="pii">24/19/8332</ArticleId>
<ArticleId IdType="pmc">PMC516738</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2003 May;23(9):3116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Apr 28;161(2):333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2003 Nov;45(6):703-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14529709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2004 Jan;29(1):32-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1984 Oct;4(10):1985-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6390181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Sep;5(9):2349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3915540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1989 Dec;16(5-6):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2692852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1990 Apr;15(4):148-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2187295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1991;56:75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1668092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Dec;12(12):5700-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1333044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Jun;16(6):2744-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8649382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Dec;12(16):1647-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9123967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Jun 12;387(6634):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Dec 1;16(23):7008-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9384580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Mar;11(3):833-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 13;151(4):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Apr;183(7):2331-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jul;21(13):4347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10320-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10314-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 2001 Oct 17;93(20):1517-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):4103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1479-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 10;415(6868):180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Apr 15;22(8):3044-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2002 Oct;12(5):516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12367630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 2002 Nov 20;94(22):1666-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12441317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Feb;1(1):22-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Dec;10(6):1295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ashe, Mark" sort="Ashe, Mark" uniqKey="Ashe M" first="Mark" last="Ashe">Mark Ashe</name>
<name sortKey="Campbell, Susan" sort="Campbell, Susan" uniqKey="Campbell S" first="Susan" last="Campbell">Susan Campbell</name>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<name sortKey="Cutler, N Shane" sort="Cutler, N Shane" uniqKey="Cutler N" first="N Shane" last="Cutler">N Shane Cutler</name>
<name sortKey="Zurita Martinez, Sara A" sort="Zurita Martinez, Sara A" uniqKey="Zurita Martinez S" first="Sara A" last="Zurita-Martinez">Sara A. Zurita-Martinez</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Rohde, John R" sort="Rohde, John R" uniqKey="Rohde J" first="John R" last="Rohde">John R. Rohde</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001871 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001871 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15367655
   |texte=   TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15367655" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020